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INTEGRAL EQUATIONS OF ELASTICITY THEORY FOR A MULTICONNECTED DOMAIN 
WITH INCLUSIONS* 

D. YA.BARDZOKAS, V.Z. PARTON and P.S. THEOCARIS 

An infinite multiconnected domain 
cracks, holes arbitrary inclusions, and 

that contains curvilinear 
also rectilinear bonding 

stringers, is examined. The defect and foreign body geometry and 
arrangement are arbitrary, but it is assumed that they do not 
intersect. Different special cases of crack, hole, stringer, and 
inclusion interaction have been studied in /l-18/. A system of 
equations describing the state of stress of such a composite medium is 
constructed in a general formulation. The problem is solved by using 
the introduction of complex potentials and the theory of singular 
integral equations (SIE) /19, 20/. Numerical realization of the SIE is 
achieved by using interpolation formulas and the Lobatto-Chebyshev 
method. 

1. Fomrmlation of the prob’lem. We consider a plane multiconnected domain referred 
to a Cartesian xy system of coordinates stretched (or compressed) at infinity by mutually 
perpendicular forces of strengths N1 and N,. The stress N, makes an angle a with the x 
axis (Fig.1). The composite medium is in equilibrium under the action of selfequilibrated 
forces applied to the crack edges and the hole outlines, and of the contact stresses occurring 
on the boundaries between the isotropic inclusions and the isotropic infinite plane (the 
inclusions and stringers can be from different elastic materials). 

The composite medium (Fig.11 consists of an infinite 
isotropic plane S in which there are M, curvilinear cracks, 

M, curvilinear closed holes, M, rectilinear stringers, 
and M, curvilinear elastic inclusions. Besides the given 
forces, concentrated forces Pj + iQj at zI* (j = I,..., K*) 
and moments M, at Zj** (j = 1, . . ., K**) can act in the 
plane of the medium. 

The following assignment of the boundary conditions 
is possible. 

Normal and tangential stresses (+ for the upper edge 

Fig.1 
and -for the lower edge) 

(u,f - tot*+) ILj (1.1) 

are given on the crack edges I] (lj = I, * . ., M*) 

The forces 
(c, - iot) ly: (1.2) 

are given on the holeSoutlines yl* (j = 1, . . ., M,) .’ 
The following system of boundary conditions /14, 15/ 

(J, nl +=lJ- .zO = c&+/02 = du,-Jdt, u,+ + iu,+ = u,- + iu,- (1.3) 

are given on the boundary L,(j=1,... M,) between the infinite medium and the rectilinear 
elastic inclusion (stringer). 

The first two conditions (1.3) result in the expression 

ih [(a,+ - ia,+) - (CT,,- - ia,-) + q+ [(a”+ + CT,+) - (1 + Y) (I”+] = 0 (1.4) 

where (u,,+, u,+, ut+) are contact stresses occurring on the boundary Lj between the infinite 
plate and the stringer L,,h is the plate thickness, E(fi,E are the elastic moduli of the 
stringer Lj and the plate S, respectively, v is Poisson's ratio, and scn is the cross- 
sectional area of the stringer Lj. 
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It is known that the contact stresses on the contact boundary of the inclusions *;, Ci 1. 
. ., Ma) and the medium s are mutually equal, i.e. 

(rF," --- iirr*)lvj = (a,- - iu*-)/s (1.5) 

and the displacement jump is given by 

,A" (t) = 2/L] [- + (U;(t) - Ui_(t)) + i + (vj+ (t)-uj-(t))] (14 

where p, is the shear modulus of the inclusions Yj* UI and uj are displacement components 
along the x and y axes in the general system of coordinates (unlike u, and &t &I and uJ. 

2. Construction of the compZex potentials. The Kolosov-Muskhelishvili potentials 
/19/ for the general case under consideration have the following form 

Here (s, is the rotation at infinity) 

r’ = _ -.& (N, -- N,) e-zia 

a,(+ z&- j.$-$d+jJ-&$ $$kf- 
i=l ” f >=I v,* 
2&j ~dT.~&p& 
j=l L3 j=l r3 

3 - 4v for plane strain, 

(3---)/(~fv) for the plane state of stress, 

(2.3) 

and {gtj (th W* @f, pj (th GJ (0 are unknown densities on the boundaries @I, yf*, &, 7~) respect- 
ively. 

To construct an expression for the potential y(z) as a function of the densities 

{Q (t). rpl* (C I$"!,)" WI, we write the boundary conditions of the problem by using the complex 
potentials 0s and Y, (3). 

The normal and tangential forces on the crack edges Ii (j = l,...,M,) have the form 

h* - io,*t) Iii = qt* (t) + q?*(t) + $ pD;* (t) + Y**(t)] t CT5 I,. 

An analogous expression 

holds on the closed contour y,* (j = l,...,M,) 
on the contour ~1.. 

where qj* (t) = (on - io,)lyl= are given forces 

The following two conditions will be satisfied on L,(j = 1, . . ..M.) (the third equality 
of (1.3) and (1.4) is taken into account): 

q)+ @) - km,* (t) + -g [CD@- (t) f upo+ (t)] = a$- @) - 

kDt,- (t) + $ [tQ,‘- (t) + Y,-(t)], t E L, 



ih 
[ 
PO+ (t) - aoT 0)) + tm - %- 0) ) + 

$ If Pi+ (Q - %+ (0) + t yo+ (4 - yo- tt))l] + 
_d$j) d - x [ 2 PO+ tt) + mo+ 0) - (1 + v) { @)o+ @I + 

5&j+ Re~[m,‘+(t) + Y;.(t)]}] = 0, tELj 

Finally, conditions (1.5) and (1.6) on the contact boundaries y, (j = i, 
the inclusions and the infinite medium are written as follows 

@O+(t) + D,+(t) + @D;+(t) + Yu,+(t)] = a+-(t) + mg + 

+ tmo’- (t) + Yo- @)I, t E Yj 

u++(t) - kjip@ + g p-b;+ (t) + Y,+ (t)] = rP {@II- 0) - 

km + $ [f@,,‘- (t) + Yo- @)I} ,+ 8 (4 

t E Yj ce = IQ/P) 

. . 
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(2.7) 

*, M.1 between 

(2.8) 

(2.9) 

Solving each of expressions (2.4)-(2.6) and (2.8) for 'Y'(t)-_@) and applying the 
known Sokhotskii-Plemelj formula, we obtain the expression for Y(z): 

(2.10) 

Here 

&’ (t) = [&)+ - &‘-I - i [&)+ - of’-], t E 1, (j = 1, . . . , M,) 

qj* (t) = 02’ - iajj), t E yj+ (j = 1, . . ., Mi) 

3. Derivation of the system of SIE. We will now set up the system of equations 
satisfying the boundary conditions. Taking account of expression (2.4) and the Sokhotskii- 
Plemelj formula for mO(z) and Y,,(z) as z+f~&, we obtain the following system of 
SIE 

i qk @) - 
AI s -dz - (3.1) 

7--t 
‘k ‘k 

[K$((t, t) vj (T) + K$ (T, t) A (7, i) -)I dz = 

t=Zk (k=l,...,M,) - 

Here 
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1 
1 

-r-_i ( *+z 1--5 
& T--t > ’ 

j = I,. . .( M,,, M,,, + 1, .1 ‘tf 

Kg’ (7, t) = i 
-i-_t ( 1 - k-22) , j = M,, i- 1, . . ., Ml,, 

MI + M, = MI,, MI, + M, = M,,,, M,,, + M, = M 
Lj* + lj, VI (t) = ~pj (t), j ‘1 1, . . ., Ml 

-G+&f, + yr*, Yj+z+f, (t) = CP~* (t), i = 1, . . ., M, 
* 

Lj+M,. + Lj, Yj+M,. (t) = ~1 (t), i = 1, . . ., MS 

G+M~, + YI, Yj+M,, (t) = Gj (t), i = 1, . . ., Ma 

Aik’ (t, f) = [oik)+ + oLk’-] _ i [D$~)+ _ #-I _ 

Lit k&&y&+-- P, + ‘Qj f - fj* 

z (t - zj*)* )I + 

Taking account of the boundary coditions (2.5) and again the Sokhotskii-Plemelj formula 
for OO (2) and Y,,(z) as z-+teyk*, we obtain 

teyk*, -(k=f,...&) ’ 

Here 

K!$(~,t)=--&(l-$z), j=l,..., M 

I 
-A ( I+$= 1 

) 
j = 1,. . ., M,,, M,,, + 1, . . ., M 

Kg’(t, t) = i 
-_ 

T-t c 
l_kl&T-i 

&Z--t ’ 1 
i=M,,+l,...,M,,, 

p,-‘Q, 1 Pi + iQ, i--f* 

211(1 + k) 7 + 2x (1 + k) t - ‘, - + (t - zj*)a )I 

If the boundary values mO(z) and YO (z) are replaced in conditions (2.7) as z+ t E 
Lk, then by using the Sokhotskii-Plemelj formula we arrive at the following system of SIE: 

- /$k’~(k’ ,j 

i (k + f) bk (t) + 
3-v-k(l+v) 

pk @) + (3.3) 
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Here 

K~~(r,t)=&(i-v++-g=+ j=f (..., 4.f 

1-f-v df I 

Kg (r, t) = 
--T--zzr--t j = i.. . ., M,,, Mlti + f, . . ., M 

i+v dt i 
-Tk;i7 -- f=M,-f-i,.‘.,M,, r--t f 

Finally, substituting the boundary values o,(z) and Y,(s) as z+tEyE into (2.9) 
and using the Sokhotskii-Plemelj formula, we obtain yet another system of SIE 

Here 

t=yt (k=-i,...,M,) 

To solve the systems of SIE (3.11-13.4) constructed, 
for a multiconnected domain reduces, 

to which the generalized problem 
we present expressions for the densities on the appropriate 
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contours, taking the boundary conditions expressed in terms of the complex potentials into 
account 

Here 

pj(t)= t(“t+-“t-) , tELj (j=1,...,M,) 
k-f-1 

(3.5) 

(3.7) 

(3.8) 

t 

where pi (2) = (I, - iut is the unknown contact stress on the appropriate inclusion boundary. 
For the solution of the problem to be unique, the system of SIE must be supplemented by 

a uniqueness condition for the displacements around the respective contours Grt Y?% L,V Ysf- 
We will have for each crack 

We will have for each hole outline 

The uniqueness condition for the displacements is the following for a rectilinear 
contour where the stringer L, is located 

(3.9) 

(3.U) 

where P,(j) (k = 1,2) is the tensile or compressive force directed along the stringer and 
applied to its ends. 

The uniqueness condition for displaeements along the contact contour y, will have the 
form 

4. &zapZes of mmputations. 1. Let a stiff circular washer S, of unit radius be 
soldered in a circular hole in an infinite plate S,. The difference between the washer and 
hole radii is 6 =O.OOl m. The plate is weakened by a rectilinear unloaded crack whose length 
equals the washer diameter. The elastic moduli and Poisson's ratios of the washer and plate 
are E, = 20.59 x iOl" N/ma, Y1 = 0.28 and E, = 3.34 x 108 N/m" , vg = 0.33. 

Taking account of the general approach, we obtain the following system of equations for 
the problem of inclusions with a crack 
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Here 

g @) = h (‘1 + &% @) -- 
‘%P d 

- - ((I& (t) - u-(t)) + i (a+ (t) - u- @))I 1 + k, dt 

Applying numerical integration formulas for functions 
circle /21/ 

along the circumference of a 

& 2 G(7&- 

2i sin [n (t+-6,)/2)sin [(n + f)(tI--*,)/2] 

j=-rt sin[(*- &j)/2] ! 

and numerical integration formulas by the Lobatto-Chebyshev method for g*(t) /22, 231, the 
values of the densities s* (t) and G (1) can be determined at interpolation points on the 
integration contours. The Lobatto-Chebyshev method provides the possibility of determining 
at once the function g* (t) at the crack ends [a, b], which means also the stress intensity 
factors at angular points 1141 

RI+)lh[ v+* J1+6 
00.9 2 gl+ (b) -j- sin 2 a* lb) 1 

KIT=(y$in ~gk’(b)-cosq%**(b)] 

(4.3) 

9 = arg (b - a). p = I b -a I 

where 6 is the angle between the crack and the x axis. 
This same problem was examined in /16/ as a special case of a contact problem for two 

bodies without friction, one of which has the crack. 
The change in the stress intensity factors K, and KI,, is shown in Fig.2 as a function 

of the crack disposition relative to the stiff inclusion, while the change in the contact 
stress P @I at the point A is shown in Fig.3 as the crack approaches the contact boundary. 

2. Let an infinite plate we weakened on one side by a rectilinear unloaded crack and on 
the other be reinforced by a stringer at whose ends tensile forces P are applied. The 
problem reduces to the following system of equations 
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(4.4) 

Here A, (z, 7) and At (t, 6 are expressions that are on the right-hand sieds of (3.1) and 
(3.3), where the forces PI f 'Qr and the moments MI are applied at the points 

c tl,l = z;,: =; Lo & tc, * L*** = ZZS = - Lo*ir 

and 

2pj= Q,=O, j=1,...,4; 2M,= 
I 

PC, i =r: 1.3 
_PPe 

, j==2.4 

while c is a comparatively small quantity. 

Fig-3 Fig.4 

Since the singularity at the edge of the stringer is the same as for a crack, i.e., 
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p (t) = f ((-Id, - t)(t - LO)}-% I"* (0, fE (-Lo, &I 

we apply the Lobatto-Chebyshev method /15/ to solve system (4.4). After having solved the 
algebraic system of equations for the densities 8' (1) and p* (0 at the interpolation 
points on the respective integration contours, the stress intensity factors K, and =1x can 

be found at the crack edge by using (4.3). 

The 

is shown 
relative 
than the 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Fig.5 Fig.6 

change in the stress intensity factors A1 and Ir;, at the crack edge (2 2, = 0.02 In 
in Figs.4-6 for the case of an aluminium plate as a function of the crack location 
to a steel stringer (2L,=Q.lm) at whose ends a 16 times greater force is applied 
magnitude of the force at infinity (~~=9,8iX 104N/m', N,= 0). 
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CONTINUAL-DISCRETE MODELLIN~ OF A ~ULTIC~MPONENT LAMINAR BODY BY USING A 
SYSTEM OF TWO-DIMENSIONAL CONTINUA~~ 

T.A. PRIBYLHVA 

A method is considered for constructing continual-discrete models 
of multicomponent layered bodies by using a system consisting of an 
arbitrary number of two-dimensional continua with finite intervals 
between them. Consistency relationships are presented for the 
fundamental kinematic, deformation, and dynamic parameters which enable 
rheological relationships to be obtained for the body as a whole taking 
the properties and nature of the interaction of the individual 
components into account. An example of the modelling of a thin laminar 
elastic body is examined. Methods for modelling a biological membrane 
are discussed. 

PhysicaL objects exist for #hich a direct description is 
impossible by methods of the mechanics of three-dimensional continuous 
media, or is insufficiently effective because the physical properties 
of the object are discrete in one of the directions, i.e., the 
requirements for the continuity hypothesis /l/ are not satisfied in 
this direction. The object here posssesses fairly continuous 
properties in the other two directions and allows of a continual 
description. 

Among the: discrete objects in the transverse direction is the 
shell of a live cell, a biological membrane, say, consisting of several 
layers of macromolecules where the individual layers include molecules 
of different species. Moreover, a broad class of laminar and 
stratified bodies exists, whose properties in the transverse direction 
can possibly be described by a discrete set of parameters. 

In. a number of papers t/2-7/, for example) the concept has been 
introduced of a two-dimensional continuum (a material surface 
possessing mass1 that is characterized by appropriate kinematic, 
dynamic, and energy parameters. The ideal of modelling multicompone~t 
laminar bodies by using systems of two-dimensional continua f8/ is 
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